Thème : Spectroscopie Cours 3 : Spectroscopie U.V. et I.R. (version élèves)

B.O. Spectroscopie infrarouge et UV-visible. Identification de groupes caractéristiques et d'espèces chimiques. Absorbance ; loi de BeerLambert.

I. Spectroscopie d'absorption.

1. Principe de la spectroscopie d'absorption.

La spectroscopie est fondée sur l'étude des interactions entre la matière et un rayonnement électromagnétique.

Quelle que soit la méthode, de l'énergie est apportée à la molécule par une onde électromagnétique.

Selon la quantité d'énergie absorbée par la molécule, des vibrations de liaisons (IR), des excitations électroniques (UV), ou des modifications internes du noyau (RMN) sont provoquées.

L'énergie d'une molécule est quantifiée donc toutes les longueurs d'onde ne sont pas absorbées ; il en résulte différents domaines d'étude spectrale selon le domaine de fréquence concerné.

- 2. Caractéristique d'un rayonnement électromagnétique :
- a. Sa fréquence ν en Hertz (Hz).
- b. Sa longueur d'onde λ en mètre (m).

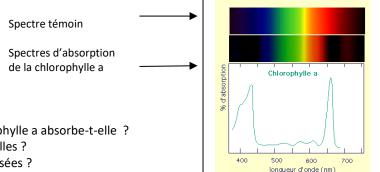
Le plus souvent est exprimé avec des sous multiples du mètre :

$$1 \mu \text{m} = 10^{-6} \text{ m}$$
 $1 \text{ nm} = 10^{-9} \text{ m}$.

c. Son nombre d'onde $\bar{\nu} = \frac{1}{\lambda}$ exprimé en m⁻¹.

Le plus souvent est exprimé en cm⁻¹ (en spectroscopie I.R.)

3. Energie associée à un rayonnement électromagnétique.

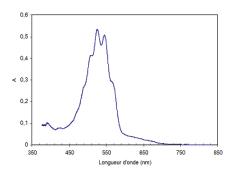

Un rayonnement électromagnétique est constitué d'un faisceau de particules, les photons, porteurs d'un quanta d'énergie $E = h v = \frac{hc}{\lambda}$.

h est la constante de Planck = $6,626 \times 10^{-34}$ J.Hz⁻¹

II. Lien entre couleur perçue et longueur d'onde au maximum d'absorption en lumière visible. (Rappels).

1. Cas d'une molécule organique : La chlorophylle.

Analyse du spectre d'une molécule de chlorophylle.



Questions:

- a. Quelles longueurs d'onde la chlorophylle a absorbe-t-elle ? A quelles couleurs correspondent-elles ?
- b. Quelles sont alors les couleurs diffusées ?
- c. Quelle est alors la couleur perçue de la chlorophylle a ?

<u>Réponses</u>:

2. Cas d'une espèce chimique inorganique : l'ion permanganate MnO₄-.

Questions:

- a. Quelles longueurs d'onde l'ion permanganate a absorbe-t-il ? A quelles couleurs correspondent-elles ?
- b. Quelles sont alors les couleurs diffusées ?
- c. Quelle est alors la couleur perçue d'une solution d'ions permanganate?

Réponses :

3. Exploitation des spectres : Application au dosage d'une espèce chimique par spectrophotométrie.

On utilisera la loi de Beer-Lambert : A = kC ou $A = \varepsilon c l$

avec ε : coefficient d'extinction molaire

Si l'on souhaite déterminer la concentration d'une solution colorée par spectrophotométrie, on choisit comme longueur d'onde, celle correspondant à l'absorption maximale. Elle est notée λ_{max} .

En effet, l'absorbance dépendant de la concentration selon la loi de Beer-Lambert, on a intérêt à régler le spectrophotomètre sur λ_{max} afin d'avoir la plus grande plage de variation possible de l'absorbance. Des valeurs de concentrations différentes seront ainsi plus facilement discernables.

III. Spectroscopie U.V.-Visible

1. Les rayonnements U.V.

La région ultraviolette du spectre s'étend de 10 à 400 nm.

Toutefois, les appareils d'analyse des spectres ne fonctionnent que pour des longueurs d'onde supérieures à 190 nm. En dessous, l'opacité de l'air pour les courtes longueurs d'onde est trop importante. Le domaine d'étude des spectres U.V. sera donc compris entre [190 nm-400 nm].

2. Principe de la spectroscopie U.V.

L'absorption des radiations U.V. par une molécule entraine des transitions électroniques.

Le retour de l'état excité à l'état fondamental a lieu avec une rémission de l'énergie absorbée.

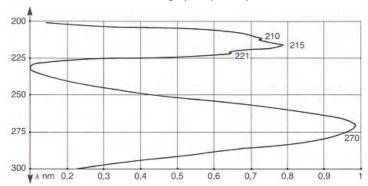
Les groupements responsables de l'absorption sont appelés « groupements chromophores »

En spectroscopie U.V. les groupements qui absorbent ces radiations sont des groupements qui possèdent des doubles liaisons :

 $\begin{array}{lll} \text{-} & \text{Les alcènes} & \text{C=C} \\ \text{-} & \text{Les amides}: & \text{-CO-NH}_2 \\ \text{-} & \text{Le groupement nitro}: & \text{-NO}_2 \\ \end{array}$

- Les groupements carbonyles :

- Aldéhyde : -CHO - Cétone : -CO-

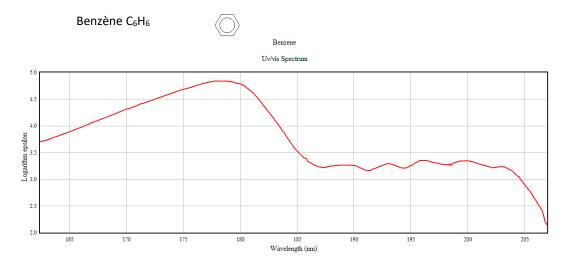

- Le groupement carboxylique : -COOH

Remarque: les molécules organiques qui absorbent dans l'U.V. émettent dans une couleur complémentaire qui se situe également dans l'U.V. C'est pour cela qu'elles sont généralement transparentes.

3. Exploitation d'un spectre U.V.

Le spectre de l'acide phényl-3-propènoïque dilué dans l'éthanol est fourni ci-dessous. Sa formule est :

On souhaite effectuer un dosage par spectrophotométrie afin de déterminer sa concentration.

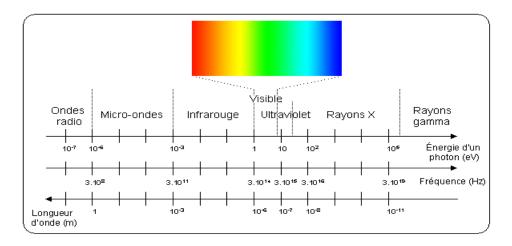

Source : Chavanne, Chimie organique expérimentale Belin.

Questions:

- a. A quelle longueur d'onde doit-on régler le spectrophotomètre ?
- b. Identifier les groupements susceptibles d'absorber les rayonnements U.V.
- c. Cette molécule possède-t-elle des liaisons conjuguées ?

<u>Réponses</u>:

4. Analyse de quelques spectres U.V.


<u>Question</u>: Comparer le spectre U.V. du benzène avec celui de l'acide phényl-3-propènoïque et interpréter.

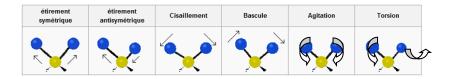
<u>Réponse</u>:

IV. Spectroscopie I.R.

Vidéo: https://www.youtube.com/watch?v=swvc0fQL5RQ (Spectroscopie – Maison de la Chimie)

1. Domaines d'étude de la spectroscopie I.R.

Question: Calculer l'énergie apportée par un photon de longueur d'onde 5,00 μm.


Données:

Célérité de la lumière dans le vide $c = 3,00 \times 10^8 \text{ m.s}^{-1}$ Constante de Planck $h = 6,63 \times 10^{-34} \text{ J.s}$ 1 eV = $1,60 \times 10^{-19} \text{ J}$

<u>Réponse</u>:

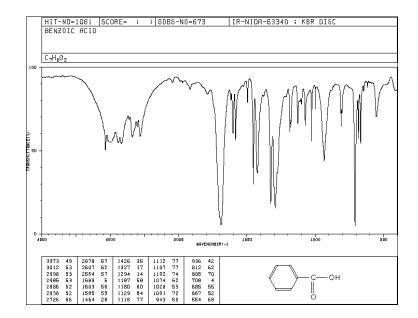
I. La spectroscopie I.R.

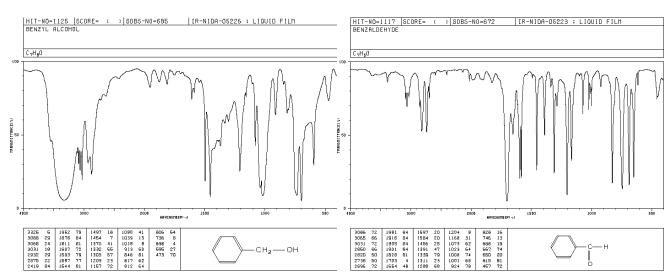
1. Absorption dans l'I.R. et vibrations des liaisons covalentes.

La spectroscopie I.R. est une méthode utilisée pour déterminer les groupes fonctionnels présents dans une molécule.

Table des nombres d'onde des vibrations de valence et de déformation de quelques groupes fonctionnels. on distingue les atomes de carbone tétragonaux (notés $C_{t\acute{e}t}$), trigonaux (notés $C_{t\acute{e}t}$) et digonaux (notés $C_{d\acute{e}t}$).

liaison	nature	nombre d'onde (cm ⁻¹)	intensité
O-H alcool libre	valence	3 580 - 3 670	F; fine
O-H alcool lié	valence	3 200 – 3 400	F; large
N-H amine	valence	3 100 – 3 500	m
imine			2000
N-H amide	valence	3 100 – 3 500	F
C _{di} -H	.valence	3 300 - 3 310	m ou f
C _{tri} –H	valence	3 000 - 3 100	m
C _{tri} -H aromatique	valence	3 030 - 3 080	m
C _{tét} -H	valence	2 800 - 3 000	F
C _{tri} -H aldéhyde	valence	2 750 - 2 900	m
O-H acide carboxylique	valence	2 500 - 3 200	Fàm; large
C≡C	valence	2 100 – 2 250	f
C≡N	valence	2 120 - 2 260	F ou m
C=O anhydride	valence	1 700 – 1 840	F; 2 bandes
C=O chlorure d'acyle	valence	1 770 – 1 820	F
C=O ester	valence	1 700 – 1 740	F
C=O aldéhyde et cétone	valence	1 650 – 1 730	F
c=0 aldenyde et ectolic	vaichee	abaissement de 20 à 30 cm ⁻¹	F
		si conjugaison	
C=O acide	valence	1 680 – 1 710	F
C=C acide			
C=C	valence	1 625 – 1 685	m
C=C aromatique	valence	1 450 – 1 600	variable; 3 ou 4 bandes
N=O	valence	1 510 - 1 580	F; 2 bandes
		1 325 – 1 365	
C=N	valence	1 600 - 1 680	F
N-H amine ou amide	déformation	1 560 - 1 640	F ou m
C _{tét} -H	déformation	1 415 – 1 470	F
Ctét-H (CH ₃)	déformation	1 365 - 1 385	F; 2 bandes
C-0	valence	1 050 - 1 450	F
C-C	valence	1 000 - 1 250	F
C-F	valence	1 000 - 1 040	F
C _{tri} -H aromatique	déformation	730 – 770	F: 2 bandes
monosubstitué		690 – 770	
C _{tri} -H aromatique			
o-disubstitué	déformation	735 – 770	F
m-disubstitué	déformation	750 – 810	F et m; 2 bandes
		680 – 725	2 01 111 , 22 0 1110 0
p-disubstitué	déformation	800 – 860	F
C _{tri} -H aromatique			
trisubstitué	déformation	770 – 800	F et m; 2 bandes
1,2,3	dojonnanon	685 – 720	1 of m , 2 bundes
1,2,4	déformation	860 – 900	F et m; 2 bandes
Lydey T	acjormanon	800 – 860	1 of m, 2 bandes
1,3,5	déformation	810 – 865	F; 2 bandes
1,0,0	иезотниноп	675 – 730	r, 2 bandes
C Cl	volence		177
C-Cl	valence	700 – 800	F
C-Br	valence	600 – 750	F
C-I	valence	500 - 600	F
			F: fort; m: moyen; f: faible


2. Exemples de spectres I.R.


Spectres I.R. de l'acide benzoïque, de l'alcool benzylique et du benzaldéhyde.

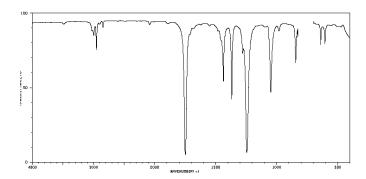
Questions : Observer les spectres ci-dessous et répondez aux questions suivantes.

- Quelles sont les grandeurs portées chaque axe ?
- Qu'indique le tableau de données ?
- Retrouver des points communs et les différences dans les spectres ci-dessous.

<u>Réponses</u>:

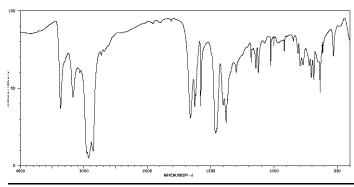
1. Exemple d'étude.

Les spectres IR ci-dessous sont ceux de :


l'éthanoate de méthyle :

e la benzamide :

<u>Question</u> : Attribuer les spectres aux molécules d'éthanoate de méthyle et de benzamide en justifiant vos réponses pour chaque spectre.


<u>Réponses</u>:

Spectre n°1

3025	84	1279	70	605	77
3015	84	1245	В		
2997	81	1048	44		
2963	72	981	84		
1748	4	844	64		
1437	52	828	16		
1369	41	640	77		

Spectre n°2

3367	35	2723	68	1402	37	1002	74	705	66	ſ
3171	42	1659	29	1377	26	919	70	686	53	l
3063	58	1625	36	1298	57	849	77	651	54	l
2953	7	1618	49	1181	64	811	70	645	64	l
2924	4	1578	37	1143	60	792	62	637	44	l
2867	11	1452	20	1124	57	77]	62	616	70	l
2854	9	1460	22	1026	62	722	62	E31	68	ı